Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 303, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639795

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Phlebovirus/genética , Phlebovirus/metabolismo , Estudos Soroepidemiológicos , Glicoproteínas/metabolismo , Anticorpos
2.
J Vet Med Sci ; 86(2): 211-220, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171741

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a potentially fatal tick-borne zoonotic disease, endemic to Asian regions, including western Japan. Cats appear to suffer a particularly severe form of the disease; however, feline SFTS is not clinically well characterized. Accordingly, in this study, we investigated the associations of, demographic, hematological and biochemical, immunological, and virological parameters with clinical outcome (fatal cases vs. survivors) in SFTSV-positive cats. Viral genomic analysis was also performed. Viral load in blood, total bilirubin, creatine phosphokinase, serum amyloid A, interleukin-6, tumor necrotic factor-α, and virus-specific IgM and IgG differed significantly between survivors and fatal cases, and thus may have utility as prognosticators. Furthermore, survivor profiling revealed high-level of viremia with multiple parameters (white blood cells, platelet, total bilirubin, glucose, and serum amyloid A) beyond the reference range in the 7-day acute phase, and signs of clinical recovery in the post-acute phase (parameters returning to, or tending toward, the reference range). However, SFTSV was still detectable from some survived cats even 14 days after onset of disease, indicating the risk of infection posed by close-contact exposure may persist through the post-acute phase. This study provides useful information for prognostic assessments of acute feline SFTS, and may contribute to early treatment plans for cats with SFTS. Our findings also alert pet owners and animal health professionals to the need for prolonged vigilance against animal-to-human transmission when handling cats that have been diagnosed with SFTS.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Doenças Transmitidas por Carrapatos , Animais , Humanos , Gatos , Febre Grave com Síndrome de Trombocitopenia/veterinária , Prognóstico , Phlebovirus/genética , Infecções por Bunyaviridae/veterinária , Infecções por Bunyaviridae/epidemiologia , Proteína Amiloide A Sérica , Doenças Transmitidas por Carrapatos/veterinária , Bilirrubina
3.
J Vet Med Sci ; 86(2): 228-238, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38143087

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by a tick-borne virus called severe fever with thrombocytopenia syndrome virus (SFTSV). In recent years, human infections through contact with ticks and through contact with the bodily fluids of infected dogs and cats have been reported; however, no vaccine is currently available. SFTSV has two glycoproteins (Gn and Gc) on its envelope, which are vaccine-target antigens involved in immunogenicity. In the present study, we constructed novel SFTS vaccine candidates using an adeno-associated virus (AAV) vector to transport the SFTSV glycoprotein genome. AAV vectors are widely used in gene therapy and their safety has been confirmed in clinical trials. Recently, AAV vectors have been used to develop influenza and SARS-CoV-2 vaccines. Two types of vaccines (AAV9-SFTSV Gn and AAV9-SFTSV Gc) carrying SFTSV Gn and Gc genes were produced. The expression of Gn and Gc proteins in HEK293T cells was confirmed by infection with vaccines. These vaccines were inoculated into mice, and the collected sera produced anti-SFTS antibodies. Furthermore, sera from AAV9-SFTSV Gn infected mice showed a potent neutralizing ability, similar to previously reported SFTS vaccine candidates that protected animals from SFTSV infection. These findings suggest that this vaccine is a promising candidate for a new SFTS vaccine.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Doenças do Cão , Phlebovirus , Doenças dos Roedores , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Animais , Humanos , Gatos , Camundongos , Cães , Febre Grave com Síndrome de Trombocitopenia/veterinária , Dependovirus/genética , Dependovirus/metabolismo , Phlebovirus/genética , Infecções por Bunyaviridae/veterinária , Vacinas contra COVID-19 , Células HEK293 , Glicoproteínas , Trombocitopenia/veterinária
4.
J Med Virol ; 95(11): e29203, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909776

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus, causing thrombocytopenia and hemorrhagic fever, with a fatality rate ranging from 12% to 30%. SFTSV possesses Gn and Gc glycoproteins, which are responsible for host cell receptor attachment and membrane fusion, respectively, to infect host cells. We have previously reported a protein subunit vaccine candidate (sGn-H-FT) of the SFTSV soluble Gn head region (sGn-H) fused with self-assembling ferritin (FT) nanoparticles, displaying strong protective immunogenicity. In this study, we present messenger RNA (mRNA) vaccine candidates encoding sGn-H or sGn-H-FT, both of which exhibit potent in vivo immunogenicity and protection capacity. Mice immunized with either sGn-H or sGn-H-FT mRNA lipid nanoparticle (LNP) vaccine produced strong total antibodies and neutralizing antibodies (NAbs) against sGn-H. Importantly, NAb titers remained high for an extended period. Finally, mice immunized with sGn-H or sGn-H-FT mRNA LNP vaccine were fully protected from a lethal dose of SFTSV challenge, showing no fatality. These findings underscore the promise of sGn-H and sGn-H-FT as vaccine antigen candidates capable of providing protective immunity against SFTSV infection.


Assuntos
Phlebovirus , Proteínas do Envelope Viral , Animais , Camundongos , Proteínas do Envelope Viral/genética , Phlebovirus/genética , Vacinas Sintéticas , RNA Mensageiro/genética , Vacinas de mRNA
5.
Viruses ; 15(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766369

RESUMO

The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. Here, we investigated the significance of the association between NSs and NP during viral infection through in-silico and in-vitro analyses. Through in-silico analysis, three possible binding sites were predicted, at positions C6S (Cystein at 6th position to Serine), W61Y (Tryptophan 61st to Tyrosine), and S207T (Serine 207th to Threonine), three mutants of NSs were developed by site-directed mutagenesis and tested for NP interaction by co-immunoprecipitation. NSsW61Y failed to interact with the nucleoprotein, which was substantiated by the conformational changes observed in the structural analyses. Additionally, molecular docking analysis corroborated that the NSW61Y mutant protein does not interact well compared to wild-type NSs. Over-expression of wild-type NSs in HeLa cells increased the SFTSV replication by five folds, but NSsW61Y exhibited 1.9-folds less viral replication than wild-type. We demonstrated that the W61Y alteration was implicated in the reduction of NSs-NP interaction and viral replication. Thus, the present study identified a critical NSs site, which could be targeted for development of therapeutic regimens against SFTSV.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Células HeLa , Transdução de Sinais , Simulação de Acoplamento Molecular , Phlebovirus/genética , Replicação Viral , Serina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
Viruses ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992507

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen for which approved therapeutic drugs or vaccines are not available. We previously developed a recombinant vesicular stomatitis virus-based vaccine candidate (rVSV-SFTSV) by replacing the original glycoprotein with Gn/Gc from SFTSV, which conferred complete protection in a mouse model. Here, we found that two spontaneous mutations, M749T/C617R, emerged in the Gc glycoprotein during passaging that could significantly increase the titer of rVSV-SFTSV. M749T/C617R enhanced the genetic stability of rVSV-SFTSV, and no further mutations appeared after 10 passages. Using immunofluorescence analysis, we found that M749T/C617R could increase glycoprotein traffic to the plasma membrane, thus facilitating virus assembly. Remarkably, the broad-spectrum immunogenicity of rVSV-SFTSV was not affected by the M749T/C617R mutations. Overall, M749T/C617R could enhance the further development of rVSV-SFTSV into an effective vaccine in the future.


Assuntos
Glicoproteínas , Mutação Puntual , Vesiculovirus , Proteínas do Envelope Viral , Vacinas Virais , Animais , Glicoproteínas/genética , Glicoproteínas/metabolismo , Phlebovirus/genética , Vesiculovirus/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/genética , Vacinas Virais/imunologia , Imunogenicidade da Vacina/genética , Imunogenicidade da Vacina/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero , Chlorocebus aethiops
7.
Microb Pathog ; 178: 106079, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966885

RESUMO

Experimental animal model is indispensable to evaluate the prophylactic and therapeutic candidates against severe fever with thrombocytopenia syndrome virus (SFTSV). To develop a suitable mouse model for SFTSV infection, we delivered human dendritic cell-specific ICAM-3-grabbing non-integrin (hDC-SIGN) by adeno-associated virus (AAV2) and validated its susceptibility for SFTSV infection. Western blot and RT-PCR assays confirmed the expression of hDC-SIGN in transduced cell lines and a significantly increased viral infectivity was observed in cells expressing hDC-SIGN. The C57BL/6 mice transduced with AAV2 exhibited a stable hDC-SIGN expression in the organs for 7 days. Upon SFTSV challenge with 1 × 105 FAID50, the mice transduced with rAAV-hDC-SIGN showed a 12.5% mortality and reduced platelet and white blood cell count in accordance with higher viral titer than control group. Liver and spleen samples collected from the transduced mice had pathological signs similar to the IFNAR-/- mice with severe SFTSV infection. Collectively, the rAAV-hDC-SIGN transduced mouse model can be used as an accessible and promising tool for studying the SFTSV pathogenesis and pre-clinical evaluation of vaccines and therapeutics against the SFTSV infection.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Phlebovirus/genética , Phlebovirus/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Modelos Animais de Doenças
8.
Sci Adv ; 8(19): eabj6894, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544562

RESUMO

Endogenous viral elements (EVEs), accounting for 15% of our genome, serve as a genetic reservoir from which new genes can emerge. Nematode EVEs are particularly diverse and informative of virus evolution. We identify Atlas virus-an intact retrovirus-like EVE in the human hookworm Ancylostoma ceylanicum, with an envelope protein genetically related to GN-GC glycoproteins from the family Phenuiviridae. A cryo-EM structure of Atlas GC reveals a class II viral membrane fusion protein fold not previously seen in retroviruses. Atlas GC has the structural hallmarks of an active fusogen. Atlas GC trimers insert into membranes with endosomal lipid compositions and low pH. When expressed on the plasma membrane, Atlas GC has cell-cell fusion activity. With its preserved biological activities, Atlas GC has the potential to acquire a cellular function. Our work reveals structural plasticity in reverse-transcribing RNA viruses.


Assuntos
Phlebovirus , Vírus de RNA , Ancylostomatoidea/metabolismo , Animais , Humanos , Phlebovirus/química , Phlebovirus/genética , Phlebovirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
9.
J Vet Med Sci ; 84(5): 675-679, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35400672

RESUMO

A two-year-old male domestic cat showed lethargy, tonic-clonic convulsion, and mucosal jaundice. Upon admission, blood examination indicated severe neutropenia and thrombocytopenia, and ultrasonography revealed diffuse splenomegaly with a honeycomb appearance and abdominal lymph nodes enlargement in addition to a decrease in cardiac blood flow indicating a shock condition. Cytology of the spleen showed a cell population composed of immature large lymphoid cells with distinct nucleoli, suggesting lymphoma. The cat received symptomatic treatments but died four hours later. Reverse transcriptase polymerase chain reaction assay of the spleen sample indicated the presence of severe fever with thrombocytopenia syndrome (SFTS) virus S gene segment. Clinical features of this case that was diagnose as SFTS were similar to lymphoma. Therefore, pet owners and veterinary workers should be protected against infection of SFTS.


Assuntos
Doenças do Gato , Linfoma , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Doenças do Gato/diagnóstico , Gatos , Linfoma/veterinária , Masculino , Phlebovirus/genética , Febre Grave com Síndrome de Trombocitopenia/veterinária
10.
Antiviral Res ; 194: 105164, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411654

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an acute infectious disease caused by a novel phlebovirus (SFTSV), characterized by fever, thrombocytopenia and leukocytopenia which lead to multiple organ failure with high mortality in severe cases. The SFTSV has spread rapidly in recent years and posed a serious threat to public health in endemic areas. However, specific antiviral therapeutics for SFTSV infection are rare. In this study, we demonstrated that two peptides, SGc1 and SGc8, derived from a hydrophobic region of the SFTSV glycoprotein Gc, could potently inhibit SFTSV replication in a dose-dependent manner without apparent cytotoxicity in various cell lines and with low immunogenicity and good stability. The IC50 (50% inhibition concentration) values for both peptides to inhibit 2 MOI of SFTSV infection were below 10 µM in L02, Vero and BHK21 cells. Mechanistically, SGc1 and SGc8 mainly inhibited viral entry at the early stage of the viral infection. Inhibition of SFTSV replication was specific by both peptides because no inhibitory effect was shown against other viruses including Zika virus and Enterovirus A71. Taken together, our results suggested that viral glycoprotein-derived SGc1 and SGc8 peptides have antiviral potential and warrant further assessment as an SFTSV-specific therapeutic.


Assuntos
Antivirais/farmacologia , Glicoproteínas/farmacologia , Peptídeos/farmacologia , Phlebovirus/química , Phlebovirus/efeitos dos fármacos , Proteínas não Estruturais Virais/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Enterovirus Humano A/efeitos dos fármacos , Feminino , Glicoproteínas/química , Concentração Inibidora 50 , Camundongos , Peptídeos/química , Phlebovirus/genética , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos
11.
J Biol Chem ; 295(28): 9691-9711, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32471869

RESUMO

The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I protein (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are cytosolic pattern recognition receptors that recognize specific viral RNA products and initiate antiviral innate immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic member of the Bunyavirales RIG-I, but not MDA5, has been suggested to sense some bunyavirus infections; however, the roles of RLRs in anti-SFTSV immune responses remain unclear. Here, we show that SFTSV infection induces an antiviral response accompanied by significant induction of antiviral and inflammatory cytokines and that RIG-I plays a main role in this induction by recognizing viral 5'-triphosphorylated RNAs and by signaling via the adaptor mitochondrial antiviral signaling protein. Moreover, MDA5 may also sense SFTSV infection and contribute to IFN induction, but to a lesser extent. We further demonstrate that the RLR-mediated anti-SFTSV signaling can be antagonized by SFTSV nonstructural protein (NSs) at the level of RIG-I activation. Protein interaction and MS-based analyses revealed that NSs interacts with the host protein tripartite motif-containing 25 (TRIM25), a critical RIG-I-activating ubiquitin E3 ligase, but not with RIG-I or Riplet, another E3 ligase required for RIG-I ubiquitination. NSs specifically trapped TRIM25 into viral inclusion bodies and inhibited TRIM25-mediated RIG-I-Lys-63-linked ubiquitination/activation, contributing to suppression of RLR-mediated antiviral signaling at its initial stage. These results provide insights into immune responses to SFTSV infection and clarify a mechanism of the viral immune evasion, which may help inform the development of antiviral therapeutics.


Assuntos
Proteína DEAD-box 58/imunologia , Evasão da Resposta Imune , Helicase IFIH1 Induzida por Interferon/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Fatores de Transcrição/imunologia , Proteínas com Motivo Tripartido/imunologia , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação/imunologia , Células A549 , Proteína DEAD-box 58/genética , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Phlebovirus/genética , Receptores Imunológicos , Febre Grave com Síndrome de Trombocitopenia/genética , Febre Grave com Síndrome de Trombocitopenia/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
12.
Nat Microbiol ; 5(6): 864-871, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341479

RESUMO

Segmented negative-sense RNA viruses (sNSRVs) encode a single-polypeptide polymerase (L protein) or a heterotrimeric polymerase complex to cannibalize host messenger RNA cap structures serving as primers of transcription, and catalyse RNA synthesis. Here, we report the full-length structure of the severe fever with thrombocytopaenia syndrome virus (SFTSV) L protein, as determined by cryogenic electron microscopy at 3.4 Å, leading to an atomic model harbouring three functional parts (an endonuclease, an RNA-dependent RNA polymerase and a cap-binding domain) and two structural domains (an arm domain with a blocker motif and a carboxy-terminal lariat domain). The SFTSV L protein has a compact architecture in which its cap-binding pocket is surprisingly occupied by an Arg finger of the blocker motif, and the endonuclease active centre faces back towards the cap-binding pocket, suggesting that domain rearrangements are necessary to acquire the pre-initiation state of the active site. Our results provide insight into the complete architecture of sNSRV-encoded L protein and further the understanding of sNSRV transcription initiation.


Assuntos
Modelos Moleculares , Phlebovirus/genética , Phlebovirus/metabolismo , RNA Viral , Iniciação da Transcrição Genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Transcrição Gênica
13.
BMC Infect Dis ; 19(1): 885, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651242

RESUMO

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infection that has recently emerged. This infectious disease is due to the transfer of SFTS virus (SFTSV) from the infected blood of animals to humans. Approximately 30% of patients who are infected with SFTS die from multiorgan failure associated with severe infection, systemic inflammatory response syndrome, or disseminated intravascular coagulation. We treated an elderly Japanese couple (husband and wife) who had genetically identical SFTSV infections and who both developed severe rhabdomyolysis. CASE PRESENTATION: An 80-year-old man presented to the clinic with a fever; his 74-year-old wife presented with a fever 9 days later. Their laboratory results at diagnosis showed severe rhabdomyolysis with significantly elevated creatinine kinase (detected levels: husband, 9546 U/L; wife, 15,933 U/L). The creatinine kinase isozyme was 100% MM type in both patients. In both the husband and wife, SFTSV was identified with real-time polymerase chain reaction analysis. The detected SFTSVs in both the husband and wife were identical according to the genome sequence analysis. The husband's bone marrow indicated macrophage activation syndrome, but he responded to supportive therapy. He was discharged after being hospitalized for 32 days. The wife was admitted to our hospital in critical condition 2 days after SFTS symptom onset. She died of multiorgan failure 8 days after onset, despite being cared for in an intensive care unit. Both of the patients presented with rhabdomyolysis following SFTS symptom onset. The patients' clinical outcomes were different from each other; i.e., the husband survived, and the wife died. CONCLUSIONS: SFTSV infection-associated rhabdomyolysis has been reported in one patient, and simultaneous onset in two related patients has not been described previously. Our findings suggest that similar biological responses occurred, but they resulted in different clinical outcomes in the patients infected by the identical SFTSV isolates. Notably, a patient's clinical outcome depends on their own immune response. We suggest that one component of viral rhabdomyolysis involves immune-mediated responses. Severe immunological responses may adversely affect the treatment outcome, as demonstrated by the wife's clinical course. Our findings demonstrate that a patient's immune response contributes to their prognosis following SFTSV infection.


Assuntos
Infecções por Bunyaviridae/etiologia , Phlebovirus/genética , Rabdomiólise/etiologia , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/patologia , Medula Óssea/virologia , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/terapia , China , Feminino , Humanos , Masculino , Insuficiência de Múltiplos Órgãos , Phlebovirus/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real , Rabdomiólise/terapia , Rabdomiólise/virologia , Cônjuges
14.
Nat Commun ; 10(1): 3836, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444366

RESUMO

Although the incidence of severe fever with thrombocytopenia syndrome virus (SFTSV) infection has increased from its discovery with a mortality rate of 10-20%, no effective vaccines are currently available. Here we describe the development of a SFTSV DNA vaccine, its immunogenicity, and its protective efficacy. Vaccine candidates induce both a neutralizing antibody response and multifunctional SFTSV-specific T cell response in mice and ferrets. When the vaccine efficacy is investigated in aged-ferrets that recapitulate fatal clinical symptoms, vaccinated ferrets are completely protected from lethal SFTSV challenge without developing any clinical signs. A serum transfer study reveals that anti-envelope antibodies play an important role in protective immunity. Our results suggest that Gn/Gc may be the most effective antigens for inducing protective immunity and non-envelope-specific T cell responses also can contribute to protection against SFTSV infection. This study provides important insights into the development of an effective vaccine, as well as corresponding immune parameters, to control SFTSV infection.


Assuntos
Imunogenicidade da Vacina , Febre por Flebótomos/prevenção & controle , Phlebovirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Feminino , Furões , Humanos , Camundongos , Febre por Flebótomos/imunologia , Febre por Flebótomos/virologia , Phlebovirus/genética , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem
15.
Virology ; 535: 102-110, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299486

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease with a high fatality rate, caused by SFTS virus (SFTSV). Because little is known about the nature of SFTSV, basic studies are required for the developments of vaccines and effective therapies. In the present study, we identified the amino acid residue important for membrane fusion induced by the SFTSV glycoprotein (GP). Syncytium formations were observed in cells expressing the GPs of SFTSV Japanese strain (YG-1 and SPL030). In contrast, no or only weak syncytium formations were induced in cells expressing GP of SFTSV Chinese strain (HB29). The replacement of arginine at amino acid residue 962 with serine in HB29 GP (R962S) induced membrane fusion, while the replacement of serine at residue 962 with arginine in YG1 GP (S962R) did not. These data indicate that serine at residue 962 in the SFTSV-GP is critical for inducing membrane fusion and viral infection.


Assuntos
Phlebovirus/fisiologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Substituição de Aminoácidos , Fusão Celular , Células Gigantes/citologia , Células Gigantes/virologia , Mutagênese Sítio-Dirigida , Phlebovirus/genética , Proteínas Virais de Fusão/genética
16.
J Dermatol ; 46(5): 409-412, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30932227

RESUMO

A case of severe fever with thrombocytopenia syndrome (SFTS) in which a skin biopsy from the tick-bite region was analyzed is reported. The patient was a 72-year-old woman who developed fever and thrombocytopenia after a tick bite. SFTS was diagnosed from polymerase chain reaction (PCR) analysis of a blood sample. Histopathological analysis of a skin biopsy specimen from the tick-bite region showed CD20-positive perivascular and interstitial immunoblastic cells, which were positive to anti-SFTS virus (SFTSV) nucleoprotein antibody. In addition, SFTSV RNA was detected by real-time PCR from this biopsy specimen. Moreover, hemophagocytosis was also found in the tick-bite region. To the best of our knowledge, this is the first report to analyze the details of the tick-bite region of skin in SFTS, and the first to detect virus-infected cells in the skin. The present findings may help elucidate the mechanisms of entry of SFTSV.


Assuntos
Coagulação Intravascular Disseminada/virologia , Febre por Flebótomos/virologia , Phlebovirus/isolamento & purificação , Trombocitopenia/virologia , Picadas de Carrapatos/patologia , Idoso , Biópsia , Coagulação Intravascular Disseminada/sangue , Coagulação Intravascular Disseminada/diagnóstico , Evolução Fatal , Feminino , Humanos , Febre por Flebótomos/sangue , Febre por Flebótomos/diagnóstico , Phlebovirus/genética , RNA Viral/isolamento & purificação , Pele/patologia , Pele/virologia , Síndrome , Trombocitopenia/sangue , Trombocitopenia/diagnóstico , Picadas de Carrapatos/sangue , Picadas de Carrapatos/complicações , Picadas de Carrapatos/virologia
17.
BMC Infect Dis ; 18(1): 528, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348099

RESUMO

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus named SFTS virus (SFTSV), which is classified into the genus Phlebovirus and family Phenuiviridae. Reactive plasmacytosis mimicking multiple myeloma is a very rare condition in association with SFTS. Here, we describe two SFTS cases who presented with hyperimmunoglobulinemia, as well as extensive bone marrow and peripheral blood plasmacytosis, which mimicked multiple myeloma (MM). CASE PRESENTATION: We report two cases who presented with fever and blood routine abnormity which were conformed as SFTS eventually. They were performed bone marrow aspiration and were admitted to the department of hematology with a preliminary diagnosis of MM. They all had hyperimmunoglobulinemia, extensive bone marrow and peripheral blood plasma cells, prolonged activated partial thromboplastin time (APTT), elevated hepatic enzyme. The two patients recovered with treatment of doxycycline, human immunoglobulins, plasma transfusion, and other supporting treatments. But case 1 occurred lymphoma 8 months later and died. CONCLUSION: SFTS might be one of differential diagnosis of MM in certain endemic area. We also conclude that SFTSV is a pantropic virus that could injure most tissues and cells of the human body.


Assuntos
Febre por Flebótomos/diagnóstico , Phlebovirus/isolamento & purificação , Adulto , Antibacterianos/uso terapêutico , Anticorpos Antivirais/sangue , Medula Óssea/patologia , Diagnóstico Diferencial , Doxiciclina/uso terapêutico , Feminino , Humanos , Imunoglobulinas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Febre por Flebótomos/tratamento farmacológico , Febre por Flebótomos/virologia , Phlebovirus/genética , Phlebovirus/imunologia , RNA Viral/metabolismo , Trombocitopenia/etiologia
18.
Emerg Microbes Infect ; 7(1): 95, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802259

RESUMO

Tick-borne viral diseases have attracted much attention in recent years because of their increasing incidence and threat to human health. Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) and Heartland virus (HRTV) were recently identified as tick-borne phleboviruses (TBPVs) in Asia and the United States, respectively, and are associated with severe human diseases with similar clinical manifestations. In this study, we report the first identification and isolation of a novel TBPV named Guertu virus (GTV) from Dermacentor nuttalli ticks in Xinjiang Province, China, where TBPVs had not been previously discovered. Genome sequence and phylogenetic analyses showed that GTV is closely related to SFTSV and HRTV and was classified as a member of the genus Phlebovirus, family Phenuiviridae, order Bunyavirales. In vitro and in vivo investigations of the properties of GTV demonstrated that it was able to infect animal and human cell lines and can suppress type I interferon signaling, similar to SFTSV, that GTV nucleoprotein (NP) can rescue SFTSV replication by replacing SFTSV NP, and that GTV infection can cause pathological lesions in mice. Moreover, a serological survey identified antibodies against GTV from serum samples of individuals living in Guertu County, three of which contained neutralizing antibodies, suggesting that GTV can infect humans. Our findings suggested that this virus is a potential pathogen that poses a threat to animals and humans. Further studies and surveillance of GTV are recommended to be carried out in Xinjiang Province as well as in other locations.


Assuntos
Dermacentor/virologia , Febre por Flebótomos/virologia , Phlebovirus/classificação , Phlebovirus/isolamento & purificação , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Genoma Viral/genética , Células HEK293 , Células Hep G2 , Humanos , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nucleoproteínas/metabolismo , Phlebovirus/genética , Filogenia , Células Vero , Replicação Viral/genética
20.
Ticks Tick Borne Dis ; 9(4): 972-975, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29615316
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA